2.9 Dimension and Rank

Recall a basis for a subspace H of \mathbb{R}^{n} is a linearly independent set in H that spans H.
Coordinate Systems
Suppose the set $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a subspace H. For each \mathbf{x} in H, the coordinates of \mathbf{x} relative to the basis \mathcal{B} are the weights c_{1}, \ldots, c_{p} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{p} \mathbf{b}_{p}$, and the vector in \mathbb{R}^{p}

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]
$$

is called the coordinate vector of \mathbf{x} (relative to \mathcal{B}) or the \mathcal{B}-coordinate vector of \mathbf{x}.

Example 1. Let $\mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], \mathbf{x}=\left[\begin{array}{r}3 \\ 12 \\ 7\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Then \mathcal{B} is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ because \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Determine if \mathbf{x} is in H, and if it is, find the coordinate vector of \mathbf{x} relative to \mathcal{B}.
ANS: \vec{x} is in $H=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \Leftrightarrow \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$ for some c_{1}, c_{2}. \Leftrightarrow The system $c_{1}\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}3 \\ 12 \\ 7\end{array}\right]$ is consistent. $\left[\begin{array}{cc|c}3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 0 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right] \Rightarrow\left\{\begin{array}{l}c_{1}=2 \\ c_{2}=3 \\ 0=0\end{array}\right.$ Thus $\vec{x}=2 \vec{v}_{1}+3 \vec{v}_{2}$, ie. $\left[\vec{x}_{\vec{\beta}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]\right.$.

FIGURE 1 A coordinate system on a plane H in \mathbb{R}^{3}.

The dimension of a nonzero subspace H, denoted by $\operatorname{dim} H$, is the number of vectors in any basis for H. The dimension of the zero subspace $\{\mathbf{0}\}$ is defined to be zero.

Example 2. The echelon form of A is given, find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$ and then state the dimensions of these subspaces.

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & 9 & 5 & 4 \\
1 & -1 & 6 & 5 & -3 \\
-2 & 0 & -6 & 1 & -2 \\
4 & 1 & 9 & 1 & -9
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & -2 & 9 & 5 & 4 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & (1) & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

ANS: By The 13 in $\S 2.8$ a basis for $\operatorname{col} A$ is

$$
\left\{\left[\begin{array}{c}
1 \\
1 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
5 \\
1 \\
1
\end{array}\right]\right\} \quad \operatorname{dim}(\operatorname{Co} \mid A)=3
$$

For $\operatorname{Nul} A$, we solve $A \vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
1 & -2 & 9 & 5 & 4 & 0 \\
0 & 1 & -3 & 0 & 7 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc|c}
(1) & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & -7 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] } \\
\Rightarrow\left\{\begin{aligned}
& x_{1}+3 x_{3}=0 \\
& x_{2}-3 x_{3}-7 x_{5}=0 \\
& x_{4}-2 x_{5}=0 \\
& 0=0
\end{aligned}\right. & \Rightarrow \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-3 \\
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
0 \\
7 \\
0 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

Thus a basis for $N_{M} I A$ is

$$
\left\{\left[\begin{array}{c}
-3 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
7 \\
0 \\
2 \\
1
\end{array}\right]\right\} \quad \text {. Thus } \operatorname{dim}\left(N_{u} \mid A\right)=2
$$

The rank of a matrix A, denoted by rank A, is the dimension of the column space of A.

$$
\operatorname{dim}(\operatorname{Col} A)=\operatorname{rank} A
$$

Theorem 14 The Rank Theorem
If a matrix A has n columns, then $\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n$.

$$
\operatorname{dim}(H)=P \quad \operatorname{dim}(\operatorname{Co|} A)
$$

Theorem 15 The Basis Theorem
Let H be a p-dimensional subspace of \mathbb{R}^{n}. Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Example 3. Find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace?

$$
\left[\begin{array}{r}
1 \\
-1 \\
-2 \\
5
\end{array}\right],\left[\begin{array}{r}
2 \\
-3 \\
-1 \\
6
\end{array}\right],\left[\begin{array}{r}
0 \\
2 \\
-6 \\
8
\end{array}\right],\left[\begin{array}{r}
-1 \\
4 \\
-7 \\
7
\end{array}\right],\left[\begin{array}{r}
3 \\
-8 \\
9 \\
-5
\end{array}\right] \quad \boldsymbol{H}=\operatorname{Col} A
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 3 \\
-1 & -3 & 2 & 4 & -8 \\
-2 & -1 & -6 & -7 & 9 \\
5 & 6 & 8 & 7 & -5
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 3 \\
0 & -1 & 2 & 3 & -5 \\
0 & 3 & -6 & -9 & 15 \\
0 & -4 & 8 & 12 & -20
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & -1 & 3 \\
0 & -1 & 2 & 3 & -5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

A basis for H is

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
5
\end{array}\right]\left[\begin{array}{c}
2 \\
-3 \\
-1 \\
-1
\end{array}\right]\right\} \text {, so } \quad \operatorname{dim} H=2
$$

Theorem The Invertible Matrix Theorem (continued)
Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.
m . The columns of A form a basis of \mathbb{R}^{n}.
n. $\operatorname{Col} A=\mathbb{R}^{n}$
o. $\operatorname{rank} A=n$
p. $\operatorname{dim} \operatorname{Nul} A=0$
q. $\operatorname{Nul} A=\{\mathbf{0}\}$

Example 4. If the rank of a 9×8 matrix A is 7, what is the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$?
By The 14 (the Rank T_{m}) $\underset{n}{\operatorname{ran} k A}+\operatorname{dim}\left(N_{n} \mid A\right)=8 \Rightarrow \operatorname{dim}\left(N_{u} \mid A\right)=8-7=1$. 7
Thus the dimension of the solution space of $\vec{A} \vec{x}=\overrightarrow{0}$ is 1 .

Exercise 5. Suppose a 4×6 matrix A has four pivot columns. Is $\operatorname{Col} A=\mathbb{R}^{4}$? Is Vul $A=\mathbb{R}^{2}$? Explain your answers.

- $\operatorname{Col} A=\mathbb{R}^{4}$. since A has a pivot in each row and so the columns of A span \mathbb{R}^{4}.
- Nul A cannot equal to \mathbb{R}^{2}. because Null A is a subspace of \mathbb{R}^{6}

Exercise 6. Construct a 5×3 matrix with rank 2.
A rank 2 matrix has a 2 -dimensional column space.
One such matrix is

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

