2.9 Dimension and Rank

Recall a basis for a subspace H of R" is a linearly independent set in H that spans H.

Coordinate Systems

Suppose the set B = {b1,...,b,} is a basis for a subspace H. For each x in H, the coordinates of x
relative to the basis B are the weights ¢y, . . . , ¢, such that x = ¢;by + - - - + ¢, by, and the vector in RP

Cp

is called the coordinate vector of x (relative to 3) or the B-coordinate vector of x.
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Example 1. Letv; = [6]|,vo= | 0|,x= |12|,and B = {vy,v2}.Then Bis a basis for
2 1 7

H = Span {v1, vs} because v; and v are linearly independent. Determine if x is in H, and if it is, find the
coordinate vector of x relative to B.
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FIGURE 1 A coordinate system on a plane
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The Dimension of a Subspace

The dimension of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The

dimension of the zero subspace {0} is defined to be zero.

Example 2. The echelon form of A is given, find bases for Col A and Nul A and then state the dimensions of

these subspaces.
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The rank of a matrix A, denoted by rank A4, is the dimension of the column space of A.

di‘M(Col A) = Yomh A

Theorem 14 The Rank Theorem

If a matrix A has n columns, then rank A + dim Nul A = n.
H

dw(H)y=p  cim (Lol A)

Theorem 15 The/Basis Theorem
Let H be a p-dimensional subspace of R™. Any linearly independent set of exactly p elements in H is
automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Example 3. Find a basis for the subspace spanned by the given vectors. What is the dimension of the
— —_—

subspace?
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Rank and the Invertible Matrix Theorem

Theorem The Invertible Matrix Theorem (continued)

Let A be ann X n matrix. Then the following statements are each equivalent to the statement that A is an
invertible matrix.

m. The columns of A form a basis of R".

n.Col A = R"

orank A =n

p.dimNulA =0

q.Nul A = {0}

Example 4. If the rank of a 9 x 8 matrix A is 7, what is the dimension of the solution space of Ax = 0?
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Exercise 5. Suppose a 4 x 6 matrix A has four pivot columns. Is Col A = R*? s Nul A = R2 ? Explain your
answers.
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Exercise 6. Construct a 5 X 3 matrix with rank 2.
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