2.9 Dimension and Rank

Recall a **basis** for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

Coordinate Systems

Suppose the set $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ is a basis for a subspace H. For each \mathbf{x} in H, the **coordinates of** \mathbf{x} **relative to the basis** \mathcal{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = egin{bmatrix} c_1 \ dots \ c_p \end{bmatrix}$$

is called the coordinate vector of ${\bf x}$ (relative to ${\cal B}$) or the ${\cal B}\text{-coordinate vector of }{\bf x}.$

Example 1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Then \mathcal{B} is a basis for

 $H = \text{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ because \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Determine if \mathbf{x} is in H, and if it is, find the coordinate vector of \mathbf{x} relative to \mathcal{B} .

ANS:
$$\vec{x}$$
 is in $\mathcal{H} = \text{Span } \vec{\gamma}\vec{v}, \vec{v}_{1}\vec{\zeta} \Leftrightarrow \vec{x} = c_{1}\vec{v}_{1} + c_{2}\vec{v}_{2}$ for some c_{1}, c_{2} .
 \Leftrightarrow The system $c_{1} \begin{bmatrix} 3\\ 6\\ 2 \end{bmatrix} + c_{2} \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ 12\\ 7 \end{bmatrix}$ is consistent.
 $\begin{bmatrix} 3 & -1\\ 6\\ 0\\ 2 \end{bmatrix} \begin{bmatrix} 3\\ 12\\ 7 \end{bmatrix} \sim \begin{bmatrix} 0 & 0\\ 2\\ 0\\ 0 \end{bmatrix} \Rightarrow \begin{cases} c_{1} = 2\\ c_{2} = 3\\ 0 = D \end{cases}$
 $fms \quad \vec{x} = 2\vec{v}_{1} + 3\vec{v}_{2}, \text{ i.e. } [\vec{x}]_{\vec{p}} = \begin{bmatrix} 2\\ 3\\ 3 \end{bmatrix}.$

FIGURE 1 A coordinate system on a plane H in \mathbb{R}^3 .

x,

The Dimension of a Subspace

The **dimension** of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

Example 2. The echelon form of A is given, find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$ and then state the dimensions of these subspaces.

$$A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ -2 & 0 & -6 & 1 & -2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 0 & (1) & -3 & 0 & -7 \\ 0 & 0 & 0 & (1) & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

ANS: By Thm 13 in \$2.8 a basis for (ol A is
$$\begin{cases} 1 & -2 & 9 & 5 & 4 \\ 0 & (1) & -3 & 0 & -7 \\ 0 & 0 & 0 & (1) & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$dim(ColA) = 3$$

For NulA, we solve
$$A = \vec{0}$$
.

$$\begin{cases}
1 & -2 & 9 & 5 & 4 & 0 \\
0 & 1 & -3 & 0 & 7 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{cases} \sim \begin{bmatrix}
0 & 0 & 3 & 0 & 0 & 0 \\
0 & 1 & -3 & 0 & -7 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\Rightarrow \begin{cases}
x_1 + 3x_3 = 0 \\
x_2 - 3x_3 - 7x_5 = 0 \\
x_4 - 2x_5 = 0 \\
0 = 0
\end{cases} \Rightarrow \vec{x} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} = x_3 \begin{bmatrix}
-3 \\
3 \\
1 \\
0 \\
0
\end{bmatrix} + x_5 \begin{bmatrix}
0 \\
7 \\
0 \\
2 \\
1
\end{bmatrix}$$
Thus a basis for NulA is
$$\begin{cases}
-3 \\
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
7 \\
0 \\
2 \\
1
\end{bmatrix}$$

The **rank** of a matrix A, denoted by rank A, is the dimension of the column space of A.

dim (ColA) = rank A

Theorem 14 The Rank Theorem

If a matrix *A* has *n* columns, then $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n$.

 $\dim(H) = P \quad \dim(ColA)$ Theorem 15 The Basis Theorem

Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Example 3. Find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace?

$\begin{vmatrix} -1 \\ -3 \end{vmatrix} \begin{vmatrix} 2 \\ 4 \end{vmatrix} \begin{vmatrix} -8 \\ -8 \end{vmatrix}$	1]	[2]	[0]	$\begin{bmatrix} -1 \end{bmatrix}$	[3]
	-1	$\left -3\right $	2	4	-8
ig -2 ig , ig -1 ig , ig -6 ig , ig -7 ig , 9 ig	-2 ,	-1 '	-6 ,	-7 '	9
$\begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 8 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix} \begin{bmatrix} -5 \end{bmatrix}$	5		8	7	$\begin{bmatrix} -5 \end{bmatrix}$

```
H = ColA
```

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 & 3 \\ -1 & -3 & 2 & 4 & -8 \\ -2 & -1 & -6 & -7 & 9 \\ 5 & 6 & 8 & 7 & -5 \\ 0 & -4 & 8 & 12 & -20 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & -1 & 3 \\ 0 & 3 & -6 & -9 & 15 \\ 0 & -4 & 8 & 12 & -20 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & -1 & 3 \\ 0 & -1 & 3 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for H is $\begin{cases} \begin{bmatrix} 1 \\ -1 \\ -2 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -3 \\ -1 \\ -1 \\ 5 \end{bmatrix}, \qquad \text{so dim } H = 2$

Rank and the Invertible Matrix Theorem

Theorem The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

m. The columns of A form a basis of \mathbb{R}^n .

- n. $\operatorname{Col} A = \mathbb{R}^n$
- o. rank A=n
- p. dim Nul A = 0
- q. Nul $A = \{\mathbf{0}\}$

Example 4. If the rank of a 9×8 matrix A is 7, what is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$?

By Thm 14 (the Rank Thm) runk
$$A + \dim(NnIA) = 8 \Rightarrow \dim(NnIA) = 8 = 7 = 1.$$

Thus the dimension of the solution space of $A \neq = \overline{0}$ is 1

Exercise 5. Suppose a 4×6 matrix A has four pivot columns. Is $\operatorname{Col} A = \mathbb{R}^4$? Is Nul $A = \mathbb{R}^2$? Explain your answers.

Col A = R⁴. since A has a pivot in each row. and so the columns of A span R⁴.
Nul A cannot equal to R^{*}. because NulA is a subspace of R⁶

Exercise 6. Construct a 5×3 matrix with rank 2.

A rank 2 matrix has a 2-dimensional column space. One such matrix is $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$